Compare commits
10 commits
76eb148928
...
6953c9bf9e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6953c9bf9e | ||
|
|
1c71badbef | ||
|
|
c2e265b407 | ||
|
|
13d640527c | ||
|
|
2b47088921 | ||
|
|
e0d9a447df | ||
|
|
705154513f | ||
|
|
aea04b8b62 | ||
|
|
ef4c5ab060 | ||
|
|
46a6c0c238 |
3 changed files with 210 additions and 14 deletions
|
|
@ -44,6 +44,11 @@ export TRLooCV
|
||||||
export PlotTRLooCV
|
export PlotTRLooCV
|
||||||
export TRLooCVNum
|
export TRLooCVNum
|
||||||
export TRGCVNum
|
export TRGCVNum
|
||||||
|
export TRSegCV
|
||||||
|
export TRVirCV
|
||||||
|
export TRBidiagDecomp
|
||||||
|
|
||||||
|
export simulateSpectrum
|
||||||
|
|
||||||
|
|
||||||
include("preprocessing.jl")
|
include("preprocessing.jl")
|
||||||
|
|
@ -51,5 +56,6 @@ include("convenience.jl")
|
||||||
include("conveniencePlots.jl")
|
include("conveniencePlots.jl")
|
||||||
include("variousRegressionFunctions.jl")
|
include("variousRegressionFunctions.jl")
|
||||||
include("TR.jl")
|
include("TR.jl")
|
||||||
|
include("simulateSpectroscopicData.jl")
|
||||||
|
|
||||||
end
|
end
|
||||||
175
src/TR.jl
175
src/TR.jl
|
|
@ -1,13 +1,6 @@
|
||||||
|
|
||||||
|
using Optimization # For numerical minimization of PRESS statistic
|
||||||
|
using OptimizationOptimJL # For numerical minimization of PRESS statistic
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
using Optimization
|
|
||||||
using OptimizationOptimJL
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
struct TRSVD
|
struct TRSVD
|
||||||
U::Matrix{Float64}
|
U::Matrix{Float64}
|
||||||
|
|
@ -22,12 +15,26 @@ struct TRSVD
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
struct TRBidiag
|
||||||
|
W::Matrix{Float64}
|
||||||
|
B::Bidiagonal{Float64, Vector{Float64}}
|
||||||
|
T::Matrix{Float64}
|
||||||
|
y::Vector{Float64}
|
||||||
|
mX::Matrix{Float64}
|
||||||
|
my::Float64
|
||||||
|
regType::String
|
||||||
|
regParam1::Float64
|
||||||
|
regMat::Matrix{Float64}
|
||||||
|
n::Int64
|
||||||
|
p::Int64
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
### TO DO: ADD FRACTIONAL DERIVATIVE REGULARIZATION ###
|
### TO DO: ADD FRACTIONAL DERIVATIVE REGULARIZATION ###
|
||||||
|
|
||||||
regularizationMatrix(X; regType="legendre", regParam1=0, regParam2=1e-14)
|
regularizationMatrix(X; regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
regularizationMatrix(p::Int64; regType="legendre", regParam1=0, regParam2=1e-14)
|
regularizationMatrix(p::Int64; regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
Calculates and returns square regularization matrix.
|
Calculates and returns square regularization matrix.
|
||||||
|
|
||||||
|
|
@ -55,22 +62,56 @@ end
|
||||||
|
|
||||||
function regularizationMatrix(p::Int64; regType="L2", regParam1=0, regParam2=1e-14)
|
function regularizationMatrix(p::Int64; regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
if regType == "bc"
|
if regType == "bc" # Discrete derivative with boundary conditions
|
||||||
regMat = [I(p); zeros(regParam1,p)]; for i = 1:regParam1 regMat = diff(regMat, dims = 1); end
|
regMat = [I(p); zeros(regParam1,p)]; for i = 1:regParam1 regMat = diff(regMat, dims = 1); end
|
||||||
elseif regType == "legendre"
|
elseif regType == "legendre" # Fill in polynomials in bottom row(s) to get square matrix
|
||||||
regMat = [I(p); zeros(regParam1,p)]; for i = 1:regParam1 regMat = diff(regMat, dims = 1); end
|
regMat = [I(p); zeros(regParam1,p)]; for i = 1:regParam1 regMat = diff(regMat, dims = 1); end
|
||||||
P, _ = plegendre(regParam1-1, p);
|
P, _ = plegendre(regParam1-1, p);
|
||||||
regMat[end-regParam1+1:end,:] = sqrt(regParam2) * P;
|
regMat[end-regParam1+1:end,:] = sqrt(regParam2) * P;
|
||||||
elseif regType == "L2"
|
elseif regType == "L2"
|
||||||
regMat = I(p);
|
regMat = I(p);
|
||||||
elseif regType == "std"
|
elseif regType == "std" # Standardization
|
||||||
regMat = regParam2;
|
regMat = regParam2;
|
||||||
|
elseif regType == "GL" # Grünwald-Letnikov fractional derivative regulariztion
|
||||||
|
# regParam1 is alpha (order of fractional derivative)
|
||||||
|
C = ones(p)*1.0;
|
||||||
|
for k in 2:p
|
||||||
|
C[k] = (1-(regParam1+1)/(k-1)) * C[k-1];
|
||||||
|
end
|
||||||
|
|
||||||
|
regMat = zeros(p,p);
|
||||||
|
|
||||||
|
for i in 1:p
|
||||||
|
regMat[i:end, i] = C[1:end-i+1];
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
return regMat
|
return regMat
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
function TRBidiagDecomp(X, y, A=(minimum(size(X))-1), regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
|
Calculates regularization matrix (using function "RegularizationMatrix"),
|
||||||
|
and centres and transforms data matrix according to "X / regMat".
|
||||||
|
Output is an object of type "TRBidiag" and is used as input to other TR functions.
|
||||||
|
"""
|
||||||
|
function TRBidiagDecomp(X, y, A=(minimum(size(X))-1), regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
|
n, p = size(X);
|
||||||
|
mX = mean(X, dims=1);
|
||||||
|
X = X .- mX;
|
||||||
|
my = mean(y);
|
||||||
|
y = vec(y .- my);
|
||||||
|
regMat = regularizationMatrix(X; regType, regParam1, regParam2);
|
||||||
|
X = X / regMat;
|
||||||
|
_, W, B, T = bidiag2(X, y, A);
|
||||||
|
TRObj = TRBidiag(W, B, T, y, mX, my, regType, regParam1, regMat, n, p);
|
||||||
|
|
||||||
|
return TRObj
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
function TRSVDDecomp(X, regType="L2", regParam1=0, regParam2=1e-14)
|
function TRSVDDecomp(X, regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
@ -92,6 +133,112 @@ TRObj = TRSVD(U, s, V, mX, regType, regParam1, regMat, n, p);
|
||||||
return TRObj
|
return TRObj
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function TRSegmentOrth(X, segments)
|
||||||
|
|
||||||
|
n = size(X,1);
|
||||||
|
n_segments = maximum(segments);
|
||||||
|
|
||||||
|
U = zeros(n,n);
|
||||||
|
|
||||||
|
for seg in 1:n_segments
|
||||||
|
inds = vec(seg .== segments)
|
||||||
|
U[inds, inds], _, _ = svd(X[inds,:], full=false);
|
||||||
|
end
|
||||||
|
|
||||||
|
return U
|
||||||
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
function TRVirCV(X, y, segments, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
|
Segmented virtual cross-validation (VirCV) for TR models.
|
||||||
|
Outputs: b, press, lambda_min, lambda_min_ind, GCV
|
||||||
|
b are (virtual) press-minimal regression coefficients.
|
||||||
|
"""
|
||||||
|
function TRVirCV(X, y, segments, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
|
U_segments = TRSegmentOrth(X, segments);
|
||||||
|
bs = vec(sum(U_segments, dims=1).^2);
|
||||||
|
|
||||||
|
n, p = size(X);
|
||||||
|
mX = mean(X, dims=1);
|
||||||
|
X = X .- mX;
|
||||||
|
my = mean(y);
|
||||||
|
y = vec(y .- my);
|
||||||
|
X = U_segments' * X;
|
||||||
|
y = U_segments' * y;
|
||||||
|
regMat = regularizationMatrix(p; regType, regParam1, regParam2);
|
||||||
|
X = X / regMat;
|
||||||
|
U, s, V = svd(X, full=false);
|
||||||
|
|
||||||
|
denom = broadcast(.+, broadcast(./, lambdas, s'), s')';
|
||||||
|
H = broadcast(.+, U.^2 * broadcast(./, s, denom), bs./n);
|
||||||
|
resid = broadcast(.-, y, U * broadcast(./, s .* (U'*y), denom));
|
||||||
|
rescv = broadcast(./, resid, broadcast(.-, 1, H));
|
||||||
|
press = vec(sum(rescv.^2, dims=1));
|
||||||
|
#rmsecv = sqrt.(1/n .* press);
|
||||||
|
GCV = vec(broadcast(./, sum(resid.^2, dims=1), mean(broadcast(.-, 1, H), dims=1).^2));
|
||||||
|
|
||||||
|
lambda_min, lambda_min_ind = findmin(press);
|
||||||
|
lambda_min_ind = lambda_min_ind[1];
|
||||||
|
|
||||||
|
denom2 = broadcast(.+, lambda_min ./ s', s')';
|
||||||
|
b = V * broadcast(./, (U' * y), denom2);
|
||||||
|
b = regMat \ b;
|
||||||
|
b = [my .- mX*b; b];
|
||||||
|
|
||||||
|
return b, press, lambda_min, lambda_min_ind, GCV
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
function TRSegCV(X, y, lambdas, cv, regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
|
Segmented cross-validation based on the Sherman-Morrison-Woodbury updating formula.
|
||||||
|
Inputs:
|
||||||
|
- X : Data matrix
|
||||||
|
- y : Response vector
|
||||||
|
- lambdas : Vector of regularization parameter values
|
||||||
|
- cv : Vector of length n indicating segment membership for each sample
|
||||||
|
- regType, regParam1, regParam2 : Inputs to regularizationMatrix function
|
||||||
|
|
||||||
|
Outputs: rmsecv, b, lambda_min, lambda_min_ind.
|
||||||
|
b are regression coefficients corresponding to the lambda value minimising the CV-error.
|
||||||
|
"""
|
||||||
|
function TRSegCV(X, y, lambdas, cv, regType="L2", regParam1=0, regParam2=1e-14)
|
||||||
|
|
||||||
|
TR = TRSVDDecomp(X, regType, regParam1, regParam2);
|
||||||
|
n_seg = maximum(cv);
|
||||||
|
n_lambdas = length(lambdas);
|
||||||
|
my = mean(y);
|
||||||
|
y = y .- my;
|
||||||
|
|
||||||
|
denom = broadcast(.+, broadcast(./, lambdas, TR.s'), TR.s')';
|
||||||
|
resid = broadcast(.-, y, TR.U * broadcast(./, TR.s .* (TR.U'*y), denom));
|
||||||
|
rescv = zeros(TR.n, n_lambdas);
|
||||||
|
sdenom = sqrt.(broadcast(./, TR.s, denom))';
|
||||||
|
|
||||||
|
for seg in 1:n_seg
|
||||||
|
|
||||||
|
Useg = TR.U[vec(cv .== seg),:];
|
||||||
|
Id = 1.0 * I(size(Useg,1)) .- 1/TR.n;
|
||||||
|
|
||||||
|
for k in 1:n_lambdas
|
||||||
|
Uk = Useg .* sdenom[k,:]';
|
||||||
|
rescv[vec(cv .== seg), k] = (Id - Uk * Uk') \ resid[vec(cv .== seg), k];
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
press = sum(rescv.^2, dims=1)';
|
||||||
|
rmsecv = sqrt.(1/TR.n .* press);
|
||||||
|
|
||||||
|
lambda_min, lambda_min_ind = findmin(rmsecv)
|
||||||
|
lambda_min_ind = lambda_min_ind[1]
|
||||||
|
b = TRRegCoeffs(TR, y, lambda_min, my)
|
||||||
|
|
||||||
|
return b, rmsecv, lambda_min, lambda_min_ind
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
|
||||||
43
src/simulateSpectroscopicData.jl
Normal file
43
src/simulateSpectroscopicData.jl
Normal file
|
|
@ -0,0 +1,43 @@
|
||||||
|
Lk(waves, c, gamma) = @. gamma / (pi*(waves-c)^2+gamma^2);
|
||||||
|
Gk(waves, c, gamma) = @. 1/(sqrt(2*pi)*gamma) * exp(-(waves-c)^2 / (2*gamma^2));
|
||||||
|
|
||||||
|
function pseudoVoigtPeak(waves, c, gamma, eta, alpha)
|
||||||
|
|
||||||
|
fk = zeros(length(waves));
|
||||||
|
|
||||||
|
for i in 1:length(c)
|
||||||
|
fk += alpha[i] .* pseudoVoigtPeak(waves, c[i], gamma[i], eta[i]);
|
||||||
|
end
|
||||||
|
|
||||||
|
return fk
|
||||||
|
end
|
||||||
|
|
||||||
|
function pseudoVoigtPeak(waves, c, gamma::Float64, eta::Float64)
|
||||||
|
|
||||||
|
fk = eta * Lk(waves, c, gamma) + (1-eta) * Gk(waves, c, gamma);
|
||||||
|
|
||||||
|
return fk
|
||||||
|
end
|
||||||
|
|
||||||
|
function simulateBaseline(waves, a)
|
||||||
|
|
||||||
|
vm = zeros(length(waves), length(a));
|
||||||
|
|
||||||
|
for i in 0:(length(a)-1)
|
||||||
|
vm[:, i+1] = waves.^i ./ norm(waves.^i);
|
||||||
|
end
|
||||||
|
|
||||||
|
b = vm * a;
|
||||||
|
|
||||||
|
return b
|
||||||
|
end
|
||||||
|
|
||||||
|
function simulateSpectrum(waves, c, gamma, eta, alpha, a, sigma=0.0)
|
||||||
|
|
||||||
|
pure_spec = pseudoVoigtPeak(waves, c, gamma, eta, alpha);
|
||||||
|
b = simulateBaseline(waves, a);
|
||||||
|
noise = randn(length(waves)) .* sigma;
|
||||||
|
spec = pure_spec + b + noise;
|
||||||
|
return spec, pure_spec, b, noise
|
||||||
|
end
|
||||||
|
|
||||||
Loading…
Add table
Reference in a new issue