Added TRVirSV and TRSegCV + various fixes
This commit is contained in:
parent
ef4c5ab060
commit
aea04b8b62
1 changed files with 97 additions and 11 deletions
108
src/TR.jl
108
src/TR.jl
|
|
@ -1,13 +1,6 @@
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
using Optimization
|
||||
using OptimizationOptimJL
|
||||
|
||||
|
||||
using Optimization # For numerical minimization of PRESS statistic
|
||||
using OptimizationOptimJL # For numerical minimization of PRESS statistic
|
||||
|
||||
struct TRSVD
|
||||
U::Matrix{Float64}
|
||||
|
|
@ -40,8 +33,8 @@ end
|
|||
"""
|
||||
### TO DO: ADD FRACTIONAL DERIVATIVE REGULARIZATION ###
|
||||
|
||||
regularizationMatrix(X; regType="legendre", regParam1=0, regParam2=1e-14)
|
||||
regularizationMatrix(p::Int64; regType="legendre", regParam1=0, regParam2=1e-14)
|
||||
regularizationMatrix(X; regType="L2", regParam1=0, regParam2=1e-14)
|
||||
regularizationMatrix(p::Int64; regType="L2", regParam1=0, regParam2=1e-14)
|
||||
|
||||
Calculates and returns square regularization matrix.
|
||||
|
||||
|
|
@ -130,6 +123,99 @@ end
|
|||
|
||||
|
||||
|
||||
"""
|
||||
function TRVirCV(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
|
||||
|
||||
Segmented virtual cross-validation (VirCV) for TR models.
|
||||
Outputs: b, press, lambda_min, lambda_min_ind, GCV
|
||||
b are (virtual) press-minimal regression coefficients.
|
||||
"""
|
||||
function TRVirCV(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
|
||||
|
||||
U_segments = TRSegmentOrth(X, segments);
|
||||
bs = vec(sum(U_segments, dims=1).^2);
|
||||
|
||||
n, p = size(X);
|
||||
mX = mean(X, dims=1);
|
||||
X = X .- mX;
|
||||
my = mean(y);
|
||||
y = vec(y .- my);
|
||||
X = U_segments' * X;
|
||||
y = U_segments' * y;
|
||||
regMat = regularizationMatrix(p; regType, regParam1, regParam2);
|
||||
X = X / regMat;
|
||||
U, s, V = svd(X, full=false);
|
||||
|
||||
denom = broadcast(.+, broadcast(./, lambdas, s'), s')';
|
||||
H = broadcast(.+, U.^2 * broadcast(./, s, denom), bs./n);
|
||||
resid = broadcast(.-, y, U * broadcast(./, s .* (U'*y), denom));
|
||||
rescv = broadcast(./, resid, broadcast(.-, 1, H));
|
||||
press = vec(sum(rescv.^2, dims=1));
|
||||
#rmsecv = sqrt.(1/n .* press);
|
||||
GCV = vec(broadcast(./, sum(resid.^2, dims=1), mean(broadcast(.-, 1, H), dims=1).^2));
|
||||
|
||||
lambda_min, lambda_min_ind = findmin(press);
|
||||
lambda_min_ind = lambda_min_ind[1];
|
||||
|
||||
denom2 = broadcast(.+, lambda_min ./ s', s')';
|
||||
b = V * broadcast(./, (U' * y), denom2);
|
||||
b = regMat \ b;
|
||||
b = [my .- mX*b; b];
|
||||
|
||||
return b, press, lambda_min, lambda_min_ind, GCV
|
||||
end
|
||||
|
||||
|
||||
|
||||
"""
|
||||
function TRSegCV(X, y, lambdas, folds, regType="L2", regParam1=0, regParam2=1e-14)
|
||||
|
||||
Segmented cross-validation based on the Sherman-Morrison-Woodbury updating formula.
|
||||
Inputs:
|
||||
- X : Data matrix
|
||||
- y : Response vector
|
||||
- lambdas : Vector of regularization parameter values
|
||||
- folds : Vector of length n indicating segment membership for each sample
|
||||
- regType, regParam1, regParam2 : Inputs to regularizationMatrix function
|
||||
|
||||
Outputs: rmsecv, b, lambda_min, lambda_min_ind.
|
||||
b are regression coefficients corresponding to the lambda value minimising the CV-error.
|
||||
"""
|
||||
function TRSegCV(X, y, lambdas, folds, regType="L2", regParam1=0, regParam2=1e-14)
|
||||
|
||||
TR = TRSVDDecomp(X, regType, regParam1, regParam2);
|
||||
n_seg = maximum(folds);
|
||||
n_lambdas = length(lambdas);
|
||||
my = mean(y);
|
||||
y = y .- my;
|
||||
|
||||
denom = broadcast(.+, broadcast(./, lambdas, TR.s'), TR.s')';
|
||||
resid = broadcast(.-, y, TR.U * broadcast(./, TR.s .* (TR.U'*y), denom));
|
||||
rescv = zeros(TR.n, n_lambdas);
|
||||
sdenom = sqrt.(broadcast(./, TR.s, denom))';
|
||||
|
||||
for seg in 1:n_seg
|
||||
|
||||
Useg = TR.U[vec(cv .== seg),:];
|
||||
Id = 1.0 * I(size(Useg,1)) .- 1/TR.n;
|
||||
|
||||
for k in 1:n_lambdas
|
||||
Uk = Useg .* sdenom[k,:]';
|
||||
rescv[vec(cv .== seg), k] = (Id - Uk * Uk') \ resid[vec(cv .== seg), k];
|
||||
end
|
||||
end
|
||||
|
||||
press = sum(rescv.^2, dims=1)';
|
||||
rmsecv = sqrt.(1/TR.n .* press);
|
||||
|
||||
lambda_min, lambda_min_ind = findmin(rmsecv)
|
||||
lambda_min_ind = lambda_min_ind[1]
|
||||
b = TRRegCoeffs(TR, y, lambda_min, my)
|
||||
|
||||
return b, rmsecv, lambda_min, lambda_min_ind
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
TRRegCoeffs(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
|
||||
TRRegCoeffs(TR::TRSVD, y, lambdas, my=0)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue