)))
This commit is contained in:
parent
7ed335fa15
commit
af4bbea81f
1 changed files with 5 additions and 5 deletions
10
src/TR.jl
10
src/TR.jl
|
|
@ -2,7 +2,7 @@
|
|||
Solves the model update problem explicitly as a least squares problem with stacked matrices.
|
||||
In practice the most naive way of approaching the update problem
|
||||
"""
|
||||
function TRLooCVUpdateNaive(X, y, lambdasu, bold)
|
||||
function TRLooCVUpdateNaive(X, y, lambdasu, bOld)
|
||||
|
||||
n, p = size(X);
|
||||
rmsecvman = zeros(length(lambdasu));
|
||||
|
|
@ -19,7 +19,7 @@ for i = 1:n
|
|||
p2 = size(Xdata, 2);
|
||||
|
||||
for j = 1:length(lambdasu)
|
||||
betas = [Xs; sqrt(lambdasu[j]) * I(p2)] \ [ys ; sqrt(lambdasu[j]) * bold];
|
||||
betas = [Xs; sqrt(lambdasu[j]) * I(p2)] \ [ys ; sqrt(lambdasu[j]) * bOld];
|
||||
rmsecvman[j] += (y[i] - (((X[i,:]' .- mX) * betas)[1] + my))^2;
|
||||
end
|
||||
end
|
||||
|
|
@ -33,7 +33,7 @@ end
|
|||
Uses the 'svd-trick' for efficient calculation of regression coefficients, but does not use leverage corrections.
|
||||
Hence regression coefficients are calculated for all lambda values
|
||||
"""
|
||||
function TRLooCVUpdateFair(X, y, lambdasu, bold)
|
||||
function TRLooCVUpdateFair(X, y, lambdasu, bOld)
|
||||
|
||||
n, p = size(X);
|
||||
rmsecvman = zeros(length(lambdasu))
|
||||
|
|
@ -53,7 +53,7 @@ for i = 1:n
|
|||
denom2 = broadcast(.+, ones(n-1), broadcast(./, lambdasu', s.^2)) # denom2 = 1 + lambda/(s's) = (s's + lambda) / (s's)
|
||||
|
||||
# Calculating regression coefficients and residual
|
||||
bcoeffs = V * broadcast(./, (U' * ys), denom) .+ bold .- V * broadcast(./, V' * bold, denom2);
|
||||
bcoeffs = V * broadcast(./, (U' * ys), denom) .+ bOld .- V * broadcast(./, V' * bOld, denom2);
|
||||
rmsecvman += ((y[i] .- ((X[i,:]' .- mX) * bcoeffs .+ my)).^2)';
|
||||
end
|
||||
|
||||
|
|
@ -131,7 +131,7 @@ end
|
|||
# Calculating rmsecv and regression coefficients
|
||||
press = sum(rescv.^2, dims=1)';
|
||||
rmsecv = sqrt.(1/n .* press);
|
||||
bcoeffs = V * broadcast(./, (U' * y), denom) .+ bold .- V * broadcast(./, V' * bold, denom2);
|
||||
bcoeffs = V * broadcast(./, (U' * y), denom) .+ bOld .- V * broadcast(./, V' * bOld, denom2);
|
||||
bcoeffs = regMat \ bcoeffs;
|
||||
|
||||
# Creating regression coefficients for uncentred data
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue