Fixed variable names
This commit is contained in:
parent
a0acdc794d
commit
3afac0a5d4
1 changed files with 24 additions and 24 deletions
48
src/TR.jl
48
src/TR.jl
|
|
@ -4,8 +4,8 @@ In practice the most naive way of approaching the update problem
|
||||||
"""
|
"""
|
||||||
function TRLooCVUpdateNaive(X, y, lambdasu, bOld)
|
function TRLooCVUpdateNaive(X, y, lambdasu, bOld)
|
||||||
|
|
||||||
n, p = size(X);
|
n, p = size(X);
|
||||||
rmsecvman = zeros(length(lambdasu));
|
rmsecv = zeros(length(lambdasu));
|
||||||
|
|
||||||
for i = 1:n
|
for i = 1:n
|
||||||
inds = setdiff(1:n, i);
|
inds = setdiff(1:n, i);
|
||||||
|
|
@ -24,9 +24,9 @@ for i = 1:n
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
rmsecvman = sqrt.(1/n .* rmsecvman);
|
rmsecv = sqrt.(1/n .* rmsecv);
|
||||||
|
|
||||||
return rmsecvman
|
return rmsecv
|
||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
@ -35,8 +35,8 @@ Hence regression coefficients are calculated for all lambda values
|
||||||
"""
|
"""
|
||||||
function TRLooCVUpdateFair(X, y, lambdasu, bOld)
|
function TRLooCVUpdateFair(X, y, lambdasu, bOld)
|
||||||
|
|
||||||
n, p = size(X);
|
n, p = size(X);
|
||||||
rmsecvman = zeros(length(lambdasu))
|
rmsecv = zeros(length(lambdasu))
|
||||||
|
|
||||||
for i = 1:n
|
for i = 1:n
|
||||||
inds = setdiff(1:n, i);
|
inds = setdiff(1:n, i);
|
||||||
|
|
@ -53,13 +53,13 @@ for i = 1:n
|
||||||
denom2 = broadcast(.+, ones(n-1), broadcast(./, lambdasu', s.^2))
|
denom2 = broadcast(.+, ones(n-1), broadcast(./, lambdasu', s.^2))
|
||||||
|
|
||||||
# Calculating regression coefficients and residual
|
# Calculating regression coefficients and residual
|
||||||
bcoeffs = V * broadcast(./, (U' * ys), denom) .+ bOld .- V * broadcast(./, V' * bOld, denom2);
|
bcoeffs = V * broadcast(./, (U' * ys), denom) .+ bOld .- V * broadcast(./, V' * bOld, denom2);
|
||||||
rmsecvman += ((y[i] .- ((X[i,:]' .- mX) * bcoeffs .+ my)).^2)';
|
rmsecv += ((y[i] .- ((X[i,:]' .- mX) * bcoeffs .+ my)).^2)';
|
||||||
end
|
end
|
||||||
|
|
||||||
rmsecvman = sqrt.(1/n .* rmsecvman);
|
rmsecv = sqrt.(1/n .* rmsecv);
|
||||||
|
|
||||||
return rmsecvman
|
return rmsecv
|
||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
@ -500,9 +500,9 @@ The LS problem is solved explicitly and no shortcuts are used.
|
||||||
"""
|
"""
|
||||||
function TRSegCVUpdateNaive(X, y, lambdas, cvfolds, bOld)
|
function TRSegCVUpdateNaive(X, y, lambdas, cvfolds, bOld)
|
||||||
|
|
||||||
n, p = size(X);
|
n, p = size(X);
|
||||||
rmsecvman = zeros(length(lambdas));
|
rmsecv = zeros(length(lambdas));
|
||||||
nfolds = length(unique(cvfolds));
|
nfolds = length(unique(cvfolds));
|
||||||
|
|
||||||
for j = 1:length(lambdas)
|
for j = 1:length(lambdas)
|
||||||
for i = 1:nfolds
|
for i = 1:nfolds
|
||||||
|
|
@ -515,14 +515,14 @@ for j = 1:length(lambdas)
|
||||||
Xs = Xdata .- mX;
|
Xs = Xdata .- mX;
|
||||||
ys = ydata .- my;
|
ys = ydata .- my;
|
||||||
|
|
||||||
betas = [Xs; sqrt(lambdas[j]) * I(p)] \ [ys; sqrt(lambdas[j]) * bOld];
|
betas = [Xs; sqrt(lambdas[j]) * I(p)] \ [ys; sqrt(lambdas[j]) * bOld];
|
||||||
rmsecvman[j] += sum((y[vec(inds)] - ((X[vec(inds),:] .- mX) * betas .+ my)).^2);
|
rmsecv[j] += sum((y[vec(inds)] - ((X[vec(inds),:] .- mX) * betas .+ my)).^2);
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
rmsecvman = sqrt.(1/n .* rmsecvman);
|
rmsecv = sqrt.(1/n .* rmsecv);
|
||||||
|
|
||||||
return rmsecvman
|
return rmsecv
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -531,9 +531,9 @@ K-fold CV for the Ridge regression update problem, using the 'SVD-trick' for cal
|
||||||
"""
|
"""
|
||||||
function TRSegCVUpdateFair(X, y, lambdas, cv, bOld)
|
function TRSegCVUpdateFair(X, y, lambdas, cv, bOld)
|
||||||
|
|
||||||
n, p = size(X);
|
n, p = size(X);
|
||||||
rmsecvman = zeros(length(lambdas));
|
rmsecv = zeros(length(lambdas));
|
||||||
nfolds = length(unique(cv));
|
nfolds = length(unique(cv));
|
||||||
|
|
||||||
for i = 1:nfolds
|
for i = 1:nfolds
|
||||||
inds = (cv .== i);
|
inds = (cv .== i);
|
||||||
|
|
@ -551,14 +551,14 @@ for i = 1:nfolds
|
||||||
denom2 = broadcast(.+, ones(n-sum(inds)), broadcast(./, lambdas', s.^2));
|
denom2 = broadcast(.+, ones(n-sum(inds)), broadcast(./, lambdas', s.^2));
|
||||||
|
|
||||||
# Calculating regression coefficients
|
# Calculating regression coefficients
|
||||||
bcoeffs = V * broadcast(./, (U' * ys), denom) .+ bOld .- V * broadcast(./, V' * bOld, denom2);
|
bcoeffs = V * broadcast(./, (U' * ys), denom) .+ bOld .- V * broadcast(./, V' * bOld, denom2);
|
||||||
rmsecvman += sum((y[vec(inds)] .- ((X[vec(inds),:] .- mX) * bcoeffs .+ my)).^2, dims=1)';
|
rmsecv += sum((y[vec(inds)] .- ((X[vec(inds),:] .- mX) * bcoeffs .+ my)).^2, dims=1)';
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
rmsecvman = sqrt.(1/n .* rmsecvman);
|
rmsecv = sqrt.(1/n .* rmsecv);
|
||||||
|
|
||||||
return rmsecvman
|
return rmsecv
|
||||||
end
|
end
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue