Added pcr and pls (bidiag2)

This commit is contained in:
Joakim Skogholt 2024-05-15 09:48:57 +02:00
parent 0ee0a4b7b1
commit 06d990278d
2 changed files with 128 additions and 0 deletions

View file

@ -30,7 +30,12 @@ export TRSegCVUpdateFair
export TRSegCVNaive
export TRSegCVFair
# From "variousRegressionFunctions.jl"
export PCR
export bidiag2
include("convenience.jl")
include("TR.jl")
include("variousRegressionFunctions")
end

View file

@ -0,0 +1,123 @@
"""
function PCR(X, y, kmax, centre=true)#, standardize=true)
Principal Component Regression (PCR).
Inputs: Data matrix, response vector, maximum number of components.
A constant term is included in the modeling if centre==true.
Outputs: B (matrix of size (p+1) x kmax), U, s, V
ADD STANDARDIZATION?? (NEED TO THINK THROUGH PREDICTION WITH NEW DATA)
X, y = importData("Beer");
B, \\_ = PCR(X, y, 10, true, false);
"""
function PCR(X, y, kmax, centre::Bool=true)#, standardize=true)
stdX = std(X, dims=1);
mX = mean(X, dims=1);
my = mean(y, dims=1);
y = y .- my;
if centre
X = X .- mX;
end
#if standardize
# X = X ./ stdX;
#end
U, s, V = svd(X, full=false);
q = s[1:kmax].^(-1) .*(U[:,1:kmax]'y);
B = cumsum(V[:,1:kmax] .* q', dims=2);
if centre
b0 = my .- mX * B
B = [b0; B];
end
return B, U, s, V
end
"""
bidiag2(X, y, A)
Julia version of the bidiag2 MATLAB function in Björck and Indahl (2017)
### Arguments
- 'X' - Data matrix of predictors
- 'y' - Vector of responses
- 'A' - Number of components
### Returns:
- beta - Matrix with regression coefficients (including constant term if centre==true)
- W, B, T - Matrices such that X \approx T*B*W'.
"""
function bidiag2(X, y, A, centre=true)
n, p = size(X);
w = zeros(p, 1);
W = zeros(p, A);
t = zeros(n, 1);
T = zeros(n, A);
P = zeros(p, A);
beta = zeros(p, A);
B = zeros(A,2);
mX = mean(X, dims=1);
my = mean(y, dims=1);
y = y .- my;
if centre
X = X .- mX;
end
w = X'y;
w = w / norm(w);
W[:,1] = w;
t = X*w;
rho = norm(t);
t = t / rho;
T[:,1] = t;
B[1,1] = rho;
d = w / rho;
beta[:,1] = (t'y) .* d;
for a in 2:A
w = X'*t - rho * w;
w = w - W*(W'*w);
theta = norm(w);
w = w / theta;
W[:,a] = w;
t = X * w - theta * t;
t = t - T*(T'*t);
rho = norm(t);
t = t / rho;
T[:,a] = t;
B[a-1, 2] = theta;
B[a, 1] = rho;
d = (w - theta*d) / rho;
beta[:,a] = beta[:,a-1] + (t'y) .* d;
end
if centre
b0 = my .- mX * beta
beta = [b0; beta];
end
B = Bidiagonal(B[:,1], B[1:end-1,2], :U);
returnvals = beta, W, B, T
return returnvals
end