From 06cceabc6e9f8d1c883331955594465d2bc606d2 Mon Sep 17 00:00:00 2001 From: Joakim Skogholt Date: Mon, 5 Feb 2024 15:32:24 +0100 Subject: [PATCH] Added fast k-fold update of reg coeffs --- src/TR.jl | 75 +++++++++++++++++++++++++++++++++++++++++++++++++++++ src/Ting.jl | 1 + 2 files changed, 76 insertions(+) diff --git a/src/TR.jl b/src/TR.jl index 5c3b68e..ca4f5ee 100644 --- a/src/TR.jl +++ b/src/TR.jl @@ -1,7 +1,82 @@ +""" +Fast k-fold cv for updating regression coefficients +""" +function TRSegCVUpdate(X, y, lambdas, cv, bold, regType="L2", regParam1=0, regParam2=1e-14) +n, p = size(X); +mX = mean(X, dims=1); +X = X .- mX; +my = mean(y); +y = y .- my; + +if regType == "bc" + regMat = [I(p); zeros(regParam1,p)]; for i = 1:regParam1 regMat = diff(regMat, dims = 1); end +elseif regType == "legendre" + regMat = [I(p); zeros(regParam1,p)]; for i = 1:regParam1 regMat = diff(regMat, dims = 1); end + P, _ = plegendre(regParam-1, p); + regMat[end-regParam1+1:end,:] = sqrt(regParam2) * P; +elseif regType == "L2" + regMat = I(p); +elseif regType == "std" + regMat = Diagonal(vec(std(X, dims=1))); +elseif regType == "GL" # Grünwald-Letnikov fractional derivative regulariztion + # regParam1 is alpha (order of fractional derivative) + C = ones(p)*1.0; + for k in 2:p + C[k] = (1-(regParam1+1)/(k-1)) * C[k-1]; + end + + regMat = zeros(p,p); + + for i in 1:p + regMat[i:end, i] = C[1:end-i+1]; + end +end + + +X = X / regMat; +U, s, V = svd(X, full=false); + +n_seg = maximum(cv); +n_lambdas = length(lambdas); +my = mean(y); +y = y .- my; + +denom = broadcast(.+, broadcast(./, lambdas, s'), s')'; +denom2 = broadcast(.+, ones(n), broadcast(./, lambdas', s.^2)) +resid = broadcast(.-, y, U * (broadcast(./, s .* (U'*y), denom) + s .* broadcast(.-, 1, broadcast(./, 1, denom2)) .* (V' * bold))) +rescv = zeros(n, n_lambdas); +sdenom = sqrt.(broadcast(./, s, denom))'; + +for seg in 1:n_seg + + Useg = U[vec(cv .== seg),:]; + Id = 1.0 * I(size(Useg,1)) .- 1/n; + + for k in 1:n_lambdas + Uk = Useg .* sdenom[k,:]'; + rescv[vec(cv .== seg), k] = (Id - Uk * Uk') \ resid[vec(cv .== seg), k]; + end +end + +press = sum(rescv.^2, dims=1)'; +rmsecv = sqrt.(1/n .* press); +bcoeffs = V * broadcast(./, (U' * y), denom); +bcoeffs = regMat \ bcoeffs; + +if my != 0 + bcoeffs = [my .- mX*bcoeffs; bcoeffs]; +end + +lambda_min, lambda_min_ind = findmin(rmsecv) +lambda_min_ind = lambda_min_ind[1] +b_lambda_min = bcoeffs[:,lambda_min_ind] + +return b_lambda_min, rmsecv, lambda_min, lambda_min_ind +end """ Updates regression coefficient by solving the augmented TR problem [Xs; sqrt(lambda)*I] * beta = [ys; sqrt(lambda)*b_old] diff --git a/src/Ting.jl b/src/Ting.jl index d4e6246..561f576 100644 --- a/src/Ting.jl +++ b/src/Ting.jl @@ -21,6 +21,7 @@ export TRLooCV export TRSegCV export regularizationMatrix export TRLooCVUpdate +export TRSegCVUpdate include("convenience.jl") include("TR.jl")