Added TRVirSV and TRSegCV + various fixes

This commit is contained in:
Joakim Skogholt 2023-05-18 13:26:55 +02:00
parent ef4c5ab060
commit aea04b8b62

108
src/TR.jl
View file

@ -1,13 +1,6 @@
using Optimization # For numerical minimization of PRESS statistic
using OptimizationOptimJL # For numerical minimization of PRESS statistic
using Optimization
using OptimizationOptimJL
struct TRSVD struct TRSVD
U::Matrix{Float64} U::Matrix{Float64}
@ -40,8 +33,8 @@ end
""" """
### TO DO: ADD FRACTIONAL DERIVATIVE REGULARIZATION ### ### TO DO: ADD FRACTIONAL DERIVATIVE REGULARIZATION ###
regularizationMatrix(X; regType="legendre", regParam1=0, regParam2=1e-14) regularizationMatrix(X; regType="L2", regParam1=0, regParam2=1e-14)
regularizationMatrix(p::Int64; regType="legendre", regParam1=0, regParam2=1e-14) regularizationMatrix(p::Int64; regType="L2", regParam1=0, regParam2=1e-14)
Calculates and returns square regularization matrix. Calculates and returns square regularization matrix.
@ -130,6 +123,99 @@ end
"""
function TRVirCV(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
Segmented virtual cross-validation (VirCV) for TR models.
Outputs: b, press, lambda_min, lambda_min_ind, GCV
b are (virtual) press-minimal regression coefficients.
"""
function TRVirCV(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
U_segments = TRSegmentOrth(X, segments);
bs = vec(sum(U_segments, dims=1).^2);
n, p = size(X);
mX = mean(X, dims=1);
X = X .- mX;
my = mean(y);
y = vec(y .- my);
X = U_segments' * X;
y = U_segments' * y;
regMat = regularizationMatrix(p; regType, regParam1, regParam2);
X = X / regMat;
U, s, V = svd(X, full=false);
denom = broadcast(.+, broadcast(./, lambdas, s'), s')';
H = broadcast(.+, U.^2 * broadcast(./, s, denom), bs./n);
resid = broadcast(.-, y, U * broadcast(./, s .* (U'*y), denom));
rescv = broadcast(./, resid, broadcast(.-, 1, H));
press = vec(sum(rescv.^2, dims=1));
#rmsecv = sqrt.(1/n .* press);
GCV = vec(broadcast(./, sum(resid.^2, dims=1), mean(broadcast(.-, 1, H), dims=1).^2));
lambda_min, lambda_min_ind = findmin(press);
lambda_min_ind = lambda_min_ind[1];
denom2 = broadcast(.+, lambda_min ./ s', s')';
b = V * broadcast(./, (U' * y), denom2);
b = regMat \ b;
b = [my .- mX*b; b];
return b, press, lambda_min, lambda_min_ind, GCV
end
"""
function TRSegCV(X, y, lambdas, folds, regType="L2", regParam1=0, regParam2=1e-14)
Segmented cross-validation based on the Sherman-Morrison-Woodbury updating formula.
Inputs:
- X : Data matrix
- y : Response vector
- lambdas : Vector of regularization parameter values
- folds : Vector of length n indicating segment membership for each sample
- regType, regParam1, regParam2 : Inputs to regularizationMatrix function
Outputs: rmsecv, b, lambda_min, lambda_min_ind.
b are regression coefficients corresponding to the lambda value minimising the CV-error.
"""
function TRSegCV(X, y, lambdas, folds, regType="L2", regParam1=0, regParam2=1e-14)
TR = TRSVDDecomp(X, regType, regParam1, regParam2);
n_seg = maximum(folds);
n_lambdas = length(lambdas);
my = mean(y);
y = y .- my;
denom = broadcast(.+, broadcast(./, lambdas, TR.s'), TR.s')';
resid = broadcast(.-, y, TR.U * broadcast(./, TR.s .* (TR.U'*y), denom));
rescv = zeros(TR.n, n_lambdas);
sdenom = sqrt.(broadcast(./, TR.s, denom))';
for seg in 1:n_seg
Useg = TR.U[vec(cv .== seg),:];
Id = 1.0 * I(size(Useg,1)) .- 1/TR.n;
for k in 1:n_lambdas
Uk = Useg .* sdenom[k,:]';
rescv[vec(cv .== seg), k] = (Id - Uk * Uk') \ resid[vec(cv .== seg), k];
end
end
press = sum(rescv.^2, dims=1)';
rmsecv = sqrt.(1/TR.n .* press);
lambda_min, lambda_min_ind = findmin(rmsecv)
lambda_min_ind = lambda_min_ind[1]
b = TRRegCoeffs(TR, y, lambda_min, my)
return b, rmsecv, lambda_min, lambda_min_ind
end
""" """
TRRegCoeffs(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14) TRRegCoeffs(X, y, lambdas, regType="L2", regParam1=0, regParam2=1e-14)
TRRegCoeffs(TR::TRSVD, y, lambdas, my=0) TRRegCoeffs(TR::TRSVD, y, lambdas, my=0)